A comprehensive resource for safe and responsible laser use

CANADA: Airbus agrees to commercialize anti-laser windscreen material; eliminates need for laser protective eyewear

Airbus has entered into an agreement with Halifax-based Metamaterial Technologies Inc. to “validate, certify, and commercialize” MTI’s laser glare reducing filter for use on aircraft windscreens. This means that pilots will automatically be protected from the visual interference of bright laser beams — at least, lasers that have the same wavelength (color) that the filter protects against.

The film will not fully block the laser light. But it will significantly reduce the glare and temporary flash blindness effects that can occur when a laser is aimed at an aircraft cockpit. This in turn reduces the potential hazard of a laser illumination.

The announcement was made at a February 21 2017 press conference. In a press release kit photo, MTI’s founder and CEO, George Palikaras, demonstrated the laser-reflecting properties by holding up a windscreen that included MTI’s metaAir film:

George Palikaras MTI Lamda Guard metaAir laser windscreen

The press release did not indicate a time frame for introduction of the windscreens into service, nor details such as an estimated cost, or aircraft to be outfitted. An Airbus spokesperson did say that there are applications beyond the company’s commercial aircraft division. Palikaras said that metaAir “can offer solutions in other industries including the military, transportation and glass manufacturers.”

For more detailed information on Airbus’ and MTI’s plans, see this page which includes interview Q&A questions with George Palikaras a few days after the February 21 press conference.

The article above is from a Metamaterial Technologies Inc. press release dated February 21 2017. The press release is reprinted below.
Click to read more...

US: Study shows windscreen coatings can reduce laser intensity

A study published online May 12 2015 indicates that nanocomposite films on aircraft windscreens can reduce laser intensity by 36% to 88%. The findings, published by the Journal of Aviation Technology and Engineering, tested three densities of nanoparticle coatings. The abstract concludes “Results lend support of the view that the addition of transparent laser attenuating films applied to aircraft windscreens may improve flight safety, and reduce the risk from distraction or disruption of flight crewmembers’ vision.”

More information at the LaserPointerSafety.com page on the 2015 Nanocomposite coating study

Canada: UPDATED - Airbus to test windscreen anti-laser film

Airbus will be testing a film said to reflect laser light, from Halifax-area manufacturer Lamda Guard. The announcement came at a June 4 2014 press conference jointly held by the two companies.

Lamda Guard’s “metaAir” film uses metamaterials, also called nano-composites, to reflect one or more laser colors without interfering with normal visibility. According to the company, the film can protect from beam angles up to +/- 50 degrees away from head-on. This has benefits when protecting cockpits against laser strikes, which can come from any angle.

It can be adhesively applied to glass or clear plastic; applications include eyewear, protective goggles and windscreens. Lamda Guard says that the Airbus tests on windscreens will mark the first time an optical metamaterial nano-composite has been applied on a large-scale surface.

metaAir small
General schematic of metaAir film. Click for larger image.



The metaAir film can be engineered either to absorb or reflect the desired wavelength(s). For aircraft application, the reflection approach is being used in order to block undesired light wavelengths from entering the cockpit. The reflection bandwidth is currently in the 15-20 nanometer range.

For the most common type of green laser pointer -- responsible for 93% of FAA reported incidents in 2013 -- with a wavelength of 532 nm, the film would block light from about 522 to 542 nm. Additional wavelength blocking can be added as well, such as the 445 nm blue used in powerful handheld lasers such as the Wicked Lasers S3 Arctic that has up to 2 watts (2000 milliwatts) output.

Two key advantages of blocking laser light at the windscreen are that pilots do not have to carry or use laser protective eyewear, and there is absolutely no interference with the visibility of aircraft instruments. In preliminary tests, the anti-laser film had a narrow enough bandwidth that it did not interfere with airport lights seen outside a cockpit.

Because of ultraviolet degradation to the adhesive layer that adheres the optical metamaterial to the windscreen, the film would need to be replaced after about 5,000 flight hours. This translates into overnight replacement roughly once every three years. The optical metamaterial itself would not have a flight hour restriction.

In addition to piloted commercial aircraft windscreens, Airbus will also be investigating related applications such as piloted military windscreens, UAV camera protection, and sensor protection for satellites and airborne platforms.

Click to read more...