A comprehensive resource for safe and responsible laser use

UK: 1,258 laser/aircraft incidents in 2016, a 12.6% drop from 2015

The U.K. Civil Aviation Authority reported that in 2016, there were 1,258 pilot reports of laser illuminations within the U.K., and an additional 274 reports of incidents that occurred outside the U.K.:

UK laser incidents 2009-2016

Note: Previous stories and charts elsewhere on LaserPointerSafety.com may have slightly different figures for some years. This is due to CAA updating numbers after a “SDD Coding Backlog”. The numbers above are all as reported in February 2017 by CAA.

The 1,258 home incidents in 2016 represent a 12.6% decrease from the 1,440 home incidents that occurred in 2015.

Similarly, the 274 overseas incidents in 2016 represent a 22.8% decrease from the 355 overseas incidents that occurred in 2015.

Here are the 1,258 home incidents in 2016, month-by-month:

UK laser incidents 2009-2016 monthly

CAA listed the top 10 locations reporting laser incidents for 2016. It is not known whether these incidents all occurred at or near the indicated airports, or whether this also includes incidents (such as helicopter strikes) that occurred elsewhere but which were tallied to the closest airport.

Top 10 UK laser incident locations 2016

As in the United States, the majority of laser illuminations were reported to be green. The figures below are for U.K. incidents; the color distribution is roughly the same for overseas incidents as well.

UK laser events by color, 2016

From a February 2017 report by the Civil Aviation Authority. This report contains additional details such as a monthly breakdown for each year 2009-2016, and for each of the top 10 home and overseas locations in 2016.

CANADA: Airbus agrees to commercialize anti-laser windscreen material; eliminates need for laser protective eyewear

Airbus has entered into an agreement with Halifax-based Metamaterial Technologies Inc. to “validate, certify, and commercialize” MTI’s laser glare reducing filter for use on aircraft windscreens. This means that pilots will automatically be protected from the visual interference of bright laser beams — at least, lasers that have the same wavelength (color) that the filter protects against.

The film will not fully block the laser light. But it will significantly reduce the glare and temporary flash blindness effects that can occur when a laser is aimed at an aircraft cockpit. This in turn reduces the potential hazard of a laser illumination.

The announcement was made at a February 21 2017 press conference. In a press release kit photo, MTI’s founder and CEO, George Palikaras, demonstrated the laser-reflecting properties by holding up a windscreen that included MTI’s metaAir film:

George Palikaras MTI Lamda Guard metaAir laser windscreen

The press release did not indicate a time frame for introduction of the windscreens into service, nor details such as an estimated cost, or aircraft to be outfitted. An Airbus spokesperson did say that there are applications beyond the company’s commercial aircraft division. Palikaras said that metaAir “can offer solutions in other industries including the military, transportation and glass manufacturers.”

For more detailed information on Airbus’ and MTI’s plans, see this page which includes interview Q&A questions with George Palikaras a few days after the February 21 press conference.

The article above is from a Metamaterial Technologies Inc. press release dated February 21 2017. The press release is reprinted below.
Click to

US: Student develops experimental laser location detection device

A university student has designed and built a prototype laser illumination detector to determine the approximate location of a green laser source. It was developed by Nate Hough, a student in the Department of Electrical and Computer Engineering at George Mason University in Fairfax, Virginia.

The system is intended for use in cockpits, and is self-contained — it does not need to interface with any aircraft instruments. For location, altitude and orientation data, it has a GPS and a 3-axis magnetic compass.

A laser is detected by a camera sensor, currently with 1024 x 1024 pixel resolution. The camera detects the bright “bloom” from a direct or near-direct laser illumination (left image, below). To distinguish laser light from a bright non-laser light such as the sun, it looks at surrounding pixels to see whether they saturate the green channel of the sensor. (The system currently looks only for green laser beams since those represent over 90% of FAA-reported laser incidents. But future versions could look for other color laser beams as well.)

Pic 2017-02-13 at 11.54.52 AM

As the laser aims away from the camera, the bright center of the laser is still visible (right image, above). The system then looks at the center of the bright area to find the pixel location. Knowing the camera’s orientation, location and altitude, a Raspberry Pi computer running a Python program written by Hough calculates the approximate location. This is automatically sent via text message to pre-programmed recipients which could include law enforcement.

In ground testing on a slope, at a relatively short distance, the error was 15 meters. As the photo diagram shows, the system was successful in determining an approximate distance and location.

Pic 2017-02-13 at 11.41.46 AM

Hough notes that the system is a low-cost proof-of-concept. Suggested improvements include “more precise location sensors [that] would improve target location accuracy. Tapping into the high quality compass and GPS sensors on a commercial aircraft, for example, would drastically improve the ability of the system.” He also stated that smartphones include all the equipment needed: camera, compass, GPS, processor and display. So it should be possible to make a smartphone application to accomplish the same task.

From “Detection and Location System for Laser Interference with Aircraft”, December 2016. Thanks to Nate Hough for bringing this to our attention and allowing us to host the PDF. Note: A similar system, which does not calculate the laser source location, is the Laser Event Recorder.

UK: New law proposes prison for aiming laser pens at aircraft, trains, cars, other vehicles

The U.K. Department for Transport on February 5 2017 said it would propose a new law making it illegal to shine laser light towards an aircraft, train, or road vehicle.

It is more stringent than the current law which 1) only applies to aiming at aircraft, 2) requires prosecutors to prove that the perpetrator endangered the aircraft and 3) has a fine of up to £2,500 (USD $3,112).

The new law will 1) apply to a wider variety of transport modes including automobiles, 2) require prosecutors only to prove that the laser was directed towards the transport vehicle and 3) will also add the prospect of prison time to the potential punishment. The exact new fines and prison terms were not stated in the DfT announcement.
Click to

US: Study shows FAA-reported eye effects or injuries for four recent years

LaserPointerSafety.com has analyzed pilot reports of eye injuries and effects which were sent to the U.S. Federal Aviation Administration for four years: 2011, 2012, 2015 and 2016.

The data shows that pilots reported eye effects or injuries in less than 1% of laser illumination incidents. Flashblindness was the most-reported effect, followed by “Pain, burning or irritation in eye.” Blurriness was also frequently listed, along with unspecified “eye injury.”

In 20% of eye effect/injury cases, the person affected sought medical attention.

Pic 2017-01-17 at 12.22.24 AM copy

Pic 2017-01-17 at 12.21.32 AM copy

From the FAA weekly Laser Report

US: 7,442 laser incidents in 2016; slight decrease compared to 2015

According to FAA data, there were 7,442 laser illuminations reported by pilots in 2016. This is a slight decrease of 3.5%, compared to 2015. However, both 2015 and 2016 had far more incidents than the previous four years, 2011-2014.

Pic 2017-01-10 at 2.41.31 AM

Here is the same data, arranged to show the average number of incidents per day:

Pic 2017-01-10 at 2.46.39 AM

Laser color(s)

As in previous years, green was by far the most-reported color:

FAA 2016 reported laser colors pie chart - 0600w

An October 2016 U.S. Food and Drug Administration proposal would allow the manufacture of laser pointers only in the 610-710 nanometer wavelength (orange-red to deep red). This chart shows the 2016 laser illuminations arranged according to those colors:

FAA 2016 reported laser colors pie chart nanometers - 0600w

Eye injuries or effects

There were 24 laser illumination incidents in 2016 where eye effects or injuries were listed. This is 0.32% of the total number of incidents. These are the effects listed; the total adds up to more than 24 due to multiple effects in some cases.

Pic 2017-01-16 at 12.00.46 PM

From the FAA weekly Laser Report, January 9 2017 with data January 1 - December 31 2016