A comprehensive resource for safe and responsible laser use

UK: 19 questions UK government is asking advice on by October 6 2017

The following are the 19 questions the U.K. government asked on August 12 2017, regarding use and misuse of laser pointers. This comes from their 23-page Call for Evidence PDF document.

Interested parties are requested to submit answers to these questions — and any free-form answers as well — via an online survey, by postal mail, or by sending an email by October 6 2017.

Additional information and links about the U.K. call for evidence are here.

What do you consider to be the scale of the problem with laser pointers? Is the problem specific to high-powered laser pointers (those with a strength of 5 mW or above), or a particular class of laser pointers? What evidence do you have to support your view?

2. How well do you think the current legislation is working? Is the current guidance on safe use of laser products sufficient?

3. Is the current guidance on manufacturing and importing laser pointers sufficient?

4. Do you have any further evidence about the nature and misuse of laser pointers?

5. What legitimate uses are there for high-powered laser pointers?

6. Have you ever purchased, sold or made a laser pointer? If so, can you provide more information about where you bought or sold the product (or its component parts), and what the intended use was?

7. (Enforcement Bodies) Do you know/can you estimate the number of manufacturers, retailers, importers and/or distributers within your Local Authority area?

8. What strength laser pointers do you make/sell? What is the price of each strength laser pointer that you make/sell? Is this a seasonal product (e.g. do you sell more at Christmas)? How many do you sell annually?

9. What is your target market?

10. (If you are an enforcement authority) Have you undertaken any enforcement actions with respect to laser pointers, and if so what were they?

11. (If you are an enforcement authority) What do you estimate as being the level of compliance with the General Product Safety Regulations for laser pointers in your area? On what evidence do you base this?

12. Do you think a licensing system to control the sale and purchase of laser pointers would be effective?

13. What do you estimate the costs of implementing a licensing system to be? How should these be recovered?

14. How might a licensing regime operate? Who should administer a licensing system? Who should enforce it?

15. Are you aware of any other licensing systems in the UK or in other countries – either for laser pointers or for similar products - which might provide the Government with a useful comparison?

16. Do you think that a ban on advertising laser pointers would be effective? Why?

17. How else might Government and other public authorities increase public awareness about the potential dangers of laser pointers?

18. How else do you think that the supply of high-powered laser pointers could be restricted? Why?

19. Do you have any other comments or views which might inform the Government’s recommendations?

UK: Government asks for ways to crack down on laser misuse; deadline is October 6

The U.K. government on August 12 2017 issued “a call for evidence into the regulation of laser pointers, including the potential value of retail licensing schemes, advertising restrictions, and potential restrictions on ownership in order to address serious public safety concerns.”

The government is concerned both with hazards from aiming laser pointers at pilots, drivers and train operators, and the potential for retinal damage among consumers when high-powered lasers are aimed into eyes.

They opened a consultation asking for suggestions for eight weeks, starting August 12 and closing at 11:45 pm on October 6 2017. A 23-page Call For Evidence PDF document is posted at the open consultation webpage. It includes background information on laser hazards and misuse.

There are 19 specific questions asked by the government, plus it is possible to respond with free-form text. Persons can respond via an online survey, by postal mail, or by sending an email.

The full text of the government’s press release is below.

From the UK government press release “Government crackdown on misuse of laser pointers”, the open consultation “Laser pointers: Call for evidence” webpage, and the call for evidence online survey webpage.
   Click to

US: Mosquito-targeting laser still not ready

In a February 2010 TED talk, former Microsoft chief technical officer Nathan Myhrvold demonstrated a mosquito-targeting laser intended for use in disease prevention. (The device is demonstrated using a green laser in this video, starting at about 13:25.)

How has the “Photonic Fence” device progressed? The short answer is that it is still being developed. It is just about to have its first excursion outside the lab.

In a 2,500-word article in the July 24 2017 New York Magazine entitled “Where’s Our Laser-Shooting Mosquito Death Machine?” writer Carl Swanson looked into the Photonic Fence progress.

Swanson visited Myhrvold’s company Intellectual Ventures. He watched a demonstration which he says “is, as you might expect, enormously satisfying. There is the laser itself, aimed by a mirror that is synced to a camera that identifies the pest marked for death based on its shape and size and the distinctive beat of its wing, and a monitor that allows you to watch its autonomous targeting. And it does so fast: 100 milliseconds is the time allotted to see the bug and shoot it for the 25 milliseconds it takes to kill it.” He said the system has killed more than 10,000 mosquitos in the lab.

But the mosquito-targeting system is still in the testing phase. Swanson notes “It’s taken years of development to figure out how to continuously track and identify a specific type of insect and then dispatch it safely and efficiently.”

Eye safety for humans is one consideration: “For instance, for the demonstration, I had to wear protective goggles since that type of laser is not safe for your eyes; I was assured that when it’s market-ready, the laser they deploy will not potentially blind human passersby.”

A major barrier is cost: “And no one has yet worked out how to make the device cheap enough to be useful in the places it is most needed, places where most people’s mosquito-defense system consists of sleeping under nets every night.”

The system “will finally be tested later this summer in Florida, in a screened-in structure, against the Asian citrus psyllid, an invasive bug that is devastating the state’s orchards.” If that goes well, it will then be tested in the open.

From New York Magazine

US: 2017 laser incidents on pace to be lower than 2016

As of June 30 2017, there were 2,933 laser illuminations of aircraft reported to the U.S. Federal Aviation Administration. This is 15% fewer than the 3,441 illuminations reported as of June 30 last year (2016).

The chart below shows cumulative laser illuminations for the period Jan. 1 - June 30, for each of the past 10 years. The blue 2017 line shows that thus far there have been fewer incidents in 2017 than in 2016, but more than in 2015.

Cumulative laser illuminations Jan 1 - June 30 for 2007-2017 741w

How to read this chart: Each year starts with 0 illumination reports. Each colored line then plots the cumulative (year-to-date) illumination reports for that year since January 1. For example, looking at the 2016 top green line, there were about 1000 reports between Jan. 1 and Feb. 12 (where the green 2016 line crosses the 1000 horizontal line). In contrast, in 2013 (purple line) there were roughly 500 reports between Jan. 1 and Feb. 12 (where the purple 2013 line crosses the 500 horizontal line).

Based on historical data, LaserPointerSafety.com projects that there will be around 7,200 laser illuminations reported to the FAA in 2017. This would be about 4% lower than the 7,442 reports in 2016, and about 7% lower than the 7,703 reports in 2015.

2004-2017 FAA incidents per year 50pct

The next chart shows the number of laser illuminations per day. Each line is a different year. The lines have been smoothed by averaging the previous 30 days (a 30-day moving average). For this reason, the lines do not start until January 30.

This shows trends within a year. For example, in both 2016 and 2017 the number of reports dropped significantly in early May, while in 2015 the number of reports was more constant during that period.

Laser illuminations Jan 1 2017 - June 30 2017 741w

The chart below shows the number of laser illuminations for every single day between Jan. 1 2007 and April 29 2017. The light spiky line shows each day’s illumination reports. This number can vary widely from one day to the next. The dark line is a 60-day moving average. This helps smooth out the data, in order to show longer-term trends.

Laser-illuminations-Jan-1-2007---Apr-29-2017 - colorized 1024

From these charts, it can be seen that illumination reports grew slowly, or even declined, in the first few months of 2015, 2016 and 2017. However, in the final months of 2015 and 2016, the number of illumination reports picked up significantly. The estimate above (that there will probably be around 7,200 reports in 2017) takes this effect into account.

Statistical note: The careful reader will see that the blue 2017 line in the first chart falls between the 2016 and 2015 lines. Yet LaserPointerSafety.com predicts 2017 as a whole (Jan-Dec) will be lower than both 2016 and 2015. This is because we used all ten years, 2007-2016, to estimate the year-end total as a proportion of the first six months. Both a simple average of these ten years, and a weighted average — where more recent years have a larger effect — indicate that the 2017 total will be in the ballpark of 7,200 illuminations. In other words, 2015 was an atypical year where illuminations in the last eight months of the year grew much faster than any other year.

US: Navy tests green beam across Chesapeake Bay

The U.S. Navy announced that they would be testing a green laser across the width of the Chesapeake Bay in the evenings on June 26-30 2017.

The information was released to help reassure any residents who might see the beam. The Navy called the beam “eye-safe” and said the beam would be turned off if an aircraft or watercraft is within 300 meters.

The purpose of the test is to “evaluate the performance of a laser system at long range over water,” according to a spokesperson. The laser would be aimed from the source to a target as far as 13 miles away.

There was speculation that the laser was 150 kilowatts, based on an earlier speech by the vice chief of naval operations. However, the spokesperson said the June 27 test would not be using the 150 kW laser.

From the Baltimore Sun, WTOP and the town of Morningside, Maryland

Taiwan: CAA considering restrictions after 8 laser incidents in first six months of 2017

Taiwan’s Civil Aeronautics Administration is preparing an amendment to the Civil Aviation Act, to make it illegal to aim laser beams at aircraft.

In previous years the Air Navigation and Weather Service had 4-5 reports per year of laser interference. As of late June 2017, there had been 8 reports.

The most recent incident happened June 21 2017, when China Airlines flight 163 was landing at Taoyuan International Airport. Laser beams were coming from near to the runway. The pilot “requested that the interference be moved, after which the flight landed safely.”

From the Taipei Times

UK: Pilots upset after proposed anti-laser law dropped

The following is the text of a June 22 2017 press release by the British Airline Pilots’ Association. The formatting has been changed slightly from the original.

Despite “dangerously high” figures on laser attacks on aircraft, the new Government has dropped plans to introduce tougher laws, a move which the UK pilots’ association says is “infuriating and dangerous”.

BALPA had been campaigning for the tougher laws in response to consistently high reports of laser attacks on planes year on year. Last year’s figures stood at more than 1,200 reported attacks.

Before the
[June 8] general election, the British Airline Pilots’ Association (BALPA) was pleased to see a specific laser offence included in the Vehicle Technology and Aviation Bill. The new offence proposed that offenders could face up to five years in prison if they shone a laser at an aircraft.

However, BALPA has now learned that the Bill will not now include the laser regulations.

The association has constantly warned that shining a laser at aircraft is extremely dangerous, particularly in critical phases of flight such as take-off and landing, putting the lives of passengers at risk. BALPA General Secretary, Brian Strutton, said:

“It is infuriating to see the changes we’d hoped for appear to have been discarded. Not having this legislation is dangerous and puts the lives of passengers and crew at risk.

“The proposed tougher laws received cross-party support so it’s baffling that they have been dropped.

“When a laser pen is pointed at an aircraft it can dazzle and distract the pilot, and has the potential to cause a crash. Last year’s incident figures remain dangerously high, with the equivalent of more than three laser attacks a day across the UK.”

The Guardian has a June 22 2017 story about BALPA’s criticism, with additional information and statistics on U.K. laser incidents.

An April 20 2017 analysis of the Vehicle Technology and Aviation Bill, written by the law firm of Addleshaw Goddard LLP, had this description:

The Bill makes it an offence to direct or shine a laser beam at a vehicle in such a way as to dazzle or distract the person driving, piloting or navigating that vehicle.

This offence is not completely new. Under section 225 of the Air Navigation Order 2016, it was an offence to 'dazzle or distract' the pilot of an aircraft and under section 240 it was an offence to 'recklessly or negligently act in a manner likely to endanger an aircraft, or any person in an aircraft'. Many have argued these offences are insufficient as they are limited to aircraft, and are summary offences only which restrict police powers. The new offence therefore applies to all 'Vehicles', which are defined as anything used for travel by land, water or air and so will apply in relation to trains, buses and other forms of transport. The penalties remain the same: a maximum fine and imprisonment for up to 5 years.

However, many still consider the new offence insufficient. A number of organisations and rights groups wanted lasers to be reclassified as offensive weapons when used in some circumstances, particularly following the failure last year of a Private Members Bill which had sought to make the sale of high wattage lasers unlawful in certain circumstances.

Canada: Laser protection windscreen film offered by Airbus subsidiary for civil aviation

Aviation parts supplier Satair Group agreed on June 21 2017 to market metaAIR anti-laser protective film for aircraft windscreens. The “metamaterial optical filter” reflects unwanted laser light while having high visibility for other desired light wavelengths. It can work even against high laser powers, and beams coming from wide angles.

Satair Group is a subsidiary of Airbus which offers parts management, service and support for all types of aircraft. Satair expects to receive a Supplemental Type Certificate from the U.S. Federal Aviation Administration, the European Aviation Safety Agency, and Transport Canada Civil Aviation in early 2018. Other jurisdictions will follow.

The metaAIR film was invented and is manufactured by Metamaterial Technologies Inc. (MTI) of Halifax, Nova Scotia. The company previously worked with Airbus to evaluate, verify and test metaAIR for use in Airbus aircraft; initially for the A320 family. The Satair agreement will bring metaAIR to all commercial aircraft including Airbus and Boeing.

From a June 21 2017 MTI press release. For more details, click the link below for an interview with MTI’s George Palikaras, discussing the technology and this agreement.
Click to

Worldwide: 3D printing creates mechanical "laser show" using a pointer

Software engineer Evan Stanford created a mechanical “laser show” using 3D-printed gears, cams and supports.

It works by putting a standard pen-type laser pointer between two cams. Cranking a handle turns the cams which bounce the laser pointer up/down and left/right to create projected patterns:

Evan Stanford mechanical laser show 01

By using different cam shapes, different patterns can be projected:

Evan Stanford mechanical laser show cams

Instructions and plans are available online, including Thingiverse 3D printing files.

Stanford noted “At this point I think it is unlikely I will continue the project. But if I did, here’s what I could do:” He then listed adding blinds to make discontinuous patterns, making the device motor driven, and adding a web service to make it easier to create new cam patterns.

From Evan Stanford’s Hackaday.io page, posted in mid-June 2017

US: Editorial wants warning labels on lasers

A May 11 2017 editorial in the Press of Atlantic City advocates “an education campaign and warning labels” for lasers sold to consumers.

The editorial notes that in the late 2000s, New Jersey beachfront cities had problems with widespread laser sales — followed by widespread misuse. Ocean City NJ banned laser sales and possession in the summer of 2010, as did another Jersey Shore city, North Wildwood, a few years later.

The paper wrote “Apparently, coverage of the incidents and bans was enough to spread the word that pointing lasers at aircraft is dangerous and illegal, as incidents in the area greatly diminished.”

The editorial then noted that despite this local decrease, there are “still about 7,000 reports of lasers aimed at aircraft each year [in the U.S.].”

The article concluded with the suggestion to “[r]equire a warning about the five years in prison and $250,000 fine on every laser for sale (on the packaging or on a handout to the buyer).”

From the Press of Atlantic City

US: New Michigan law targets directed energy aimed at aircraft, trains

A new law in Michigan will take aim at perpetrators who aim laser pointers at aircraft. The penalty is up to 5 years in state prison and a fine of up to $10,000. The bill was signed by Michigan Governor Rick Snyder May 9 2017 and will take effect 90 days later.

The bill was introduced February 27 2017 after a number of laser pointer incidents in the state.

Although there is a similar federal law (5 years in federal prison and fine up to $250,000), the legislators who introduced the Michigan bill said the state can now prosecute, whether or not federal officials choose to prosecute. Prior to passage of the law, state or local law enforcement could not arrest laser perpetrators unless they committed a separate offense under state or local law.

The bill makes it illegal to intentionally aim “a beam of directed energy emitted from a directed energy device at an aircraft or into the path of an aircraft or a moving train.” The bill defines “directed energy device” as “any device that emits highly focused energy and is capable of transferring that energy to a target to damage or interfere with its operation. The energy from a directed energy device would include the following forms of energy:

-- Electromagnetic radiation, including radio frequency, microwave, lasers, and masers.
-- Particles with mass, in particle-beam weapons and devices.
-- Sound, in sonic weapons and devices.”

As with the federal law, there are exceptions in the bill for FAA and DOD authorized users, and for persons using a laser emergency signaling device to send an emergency distress signal.

There were actually two bills introduced by Republican state representatives Laura Cox and Tom Barrett. House Bill 4063 made it a crime to aim directed energy at aircraft or a moving train. HB 4064 also adds the laser provisions to sentencing guidelines.

HB 4063 originally passed the House March 16 2017 by a vote of 107-1. An amended version passed the Senate April 25, 111-37 and passed the House May 2, 105-2. It was sent to the Governor on May 4.

From the Detroit News (March 16 story, May 2 story), U.S. News and World Report, and the Michigan legislature website page for HB 4063.

US: Student builds device to automatically shoot eyes with a laser pointer

A 19-year-old Northern Arizona University student posted a YouTube video showing a device he built that tracks a face, and aims a laser beam towards the eyes.

Michael Reeves’ tongue-in-cheek narration states “…it’s really doing its job of lasering me in the eye which is the real innovation here. To my pleasant surprise I found that this machine also solved another of society's problems; the fact that you're not seeing little tiny dots in your vision all day long. I know where to go when I wanted to see little dots, now I can't focus on anything.”

Michael Reeves laser pointer in eye 01
The inset photos show what the camera is seeing (left) and the red box indicating face detection (right)

The laser in the video looks substantially more powerful than the U.S. FDA limit of 5 milliwatts. (However, it can be difficult to estimate laser power from a video. For example, the camera may be more red-sensitive than human eyes which might explain why the beam seems so large and bright.)

Anyone doing this should be aware of the problem of laser pointers often being more powerful than the label states, and more powerful than the U.S. limit of 5 mW.

Fortunately for Reeves’ vision, the laser is mechanically aimed by two devices that move it left-right and up-down. This makes the aiming relatively slow and lagging the facial recognition, so the beam can be dodged much of the time. He moves to avoid the beam, and is hit in or very near to an eye about once every couple of seconds.

The screenshot below shows the camera (blue arrow) and a laser module mounted on two servos (yellow arrow).

Michael Reeves laser pointer in eye 02

As befits a student budget, the housing is an old pizza box. Reeves wrote the facial recognition and aiming program in C#, using Emgu CV, a .Net wrapper for the OpenCV computer vision library.

In about a day, the video received 80,000 views as well as being featured at tech blog The Verge.

From The Verge. Original YouTube video here.

UPDATED April 19 2017: Michael Reeves told C/Net “My eyes are fine. A lot of people seem concerned about that, which I admit is warranted. I used a 5 mW laser diode, and never had it in my vision for more than a fraction of a second."

UK: Firm developing active optics to block laser light, for use in glasses and visors

Folium Optics, a firm from Thornbury near Bristol, is developing an anti-laser shield consisting of two thin layers of plastic containing liquid crystals. When laser light is detected, the shield acts as a shutter to block the detected wavelength, while still giving good visibility to other colors.

It can be integrated into visors, goggles or other eyewear. Below is an “early prototype” showing detectors above the nose bridge and batteries on one earpiece:

Folium Optics multicurve active visor prototype for laser dazzle

They began work on the “laser dazzle visor” in 2014 and hope to start selling to military, airline suppliers and emergency services in 2018.

From Folium Optics and the Express

UK: 1,258 laser/aircraft incidents in 2016, a 12.6% drop from 2015

The U.K. Civil Aviation Authority reported that in 2016, there were 1,258 pilot reports of laser illuminations within the U.K., and an additional 274 reports of incidents that occurred outside the U.K.:

UK laser incidents 2009-2016

Note: Previous stories and charts elsewhere on LaserPointerSafety.com may have slightly different figures for some years. This is due to CAA updating numbers after a “SDD Coding Backlog”. The numbers above are all as reported in February 2017 by CAA.

The 1,258 home incidents in 2016 represent a 12.6% decrease from the 1,440 home incidents that occurred in 2015.

Similarly, the 274 overseas incidents in 2016 represent a 22.8% decrease from the 355 overseas incidents that occurred in 2015.

Here are the 1,258 home incidents in 2016, month-by-month:

UK laser incidents 2009-2016 monthly

CAA listed the top 10 locations reporting laser incidents for 2016. It is not known whether these incidents all occurred at or near the indicated airports, or whether this also includes incidents (such as helicopter strikes) that occurred elsewhere but which were tallied to the closest airport.

Top 10 UK laser incident locations 2016

As in the United States, the majority of laser illuminations were reported to be green. The figures below are for U.K. incidents; the color distribution is roughly the same for overseas incidents as well.

UK laser events by color, 2016

From a February 2017 report by the Civil Aviation Authority. This report contains additional details such as a monthly breakdown for each year 2009-2016, and for each of the top 10 home and overseas locations in 2016.

Canada: Airbus agrees to commercialize anti-laser windscreen material; eliminates need for laser protective eyewear

Airbus has entered into an agreement with Halifax-based Metamaterial Technologies Inc. to “validate, certify, and commercialize” MTI’s laser glare reducing filter for use on aircraft windscreens. This means that pilots will automatically be protected from the visual interference of bright laser beams — at least, lasers that have the same wavelength (color) that the filter protects against.

The film is not designed to fully block the laser light. It will significantly reduce the glare and temporary flash blindness effects that can occur when a laser is aimed at an aircraft cockpit. This in turn reduces the potential hazard of a laser illumination.

The announcement was made at a February 21 2017 press conference. In a press release kit photo, MTI’s founder and CEO, George Palikaras, demonstrated the laser-reflecting properties by holding up a windscreen that included MTI’s metaAIR film:

George Palikaras MTI Lamda Guard metaAir laser windscreen

The press release did not indicate a time frame for introduction of the windscreens into service, nor details such as an estimated cost, or aircraft to be outfitted. An Airbus spokesperson did say that there are applications beyond the company’s commercial aircraft division. Palikaras said that metaAIR “can offer solutions in other industries including the military, transportation and glass manufacturers.”

For more detailed information on Airbus’ and MTI’s plans, see this page which includes interview Q&A questions with George Palikaras a few days after the February 21 press conference.

UPDATED April 14 2017: Metamaterials Technologies Inc. closed an $8.3 million round of funding. This will be used to support commercialization of the windscreen film and to add needed staff. MTI can produce metaAIR sheets 80 cm wide by 100 cm long, which is sufficient for standard cockpit windows that are 60 cm wide. However, the process is currently semi-automated and needs to be fully automated. MTI is also looking for new headquarters. From the Chronicle Herald.

UPDATED July 5 2017: MTI will be making its metaAIR anti-laser windscreen film available to non-Airbus aircraft, through aviation parts supplier Satair. An interview with George Palikaras goes into details.

Metamaterial Technologies Inc. issued a press release dated February 21 2017, which is reprinted below.
Click to

US: Student develops experimental laser location detection device

A university student has designed and built a prototype laser illumination detector to determine the approximate location of a green laser source. It was developed by Nate Hough, a student in the Department of Electrical and Computer Engineering at George Mason University in Fairfax, Virginia.

The system is intended for use in cockpits, and is self-contained — it does not need to interface with any aircraft instruments. For location, altitude and orientation data, it has a GPS and a 3-axis magnetic compass.

A laser is detected by a camera sensor, currently with 1024 x 1024 pixel resolution. The camera detects the bright “bloom” from a direct or near-direct laser illumination (left image, below). To distinguish laser light from a bright non-laser light such as the sun, it looks at surrounding pixels to see whether they saturate the green channel of the sensor. (The system currently looks only for green laser beams since those represent over 90% of FAA-reported laser incidents. But future versions could look for other color laser beams as well.)

Pic 2017-02-13 at 11.54.52 AM

As the laser aims away from the camera, the bright center of the laser is still visible (right image, above). The system then looks at the center of the bright area to find the pixel location. Knowing the camera’s orientation, location and altitude, a Raspberry Pi computer running a Python program written by Hough calculates the approximate location. This is automatically sent via text message to pre-programmed recipients which could include law enforcement.

In ground testing on a slope, at a relatively short distance, the error was 15 meters. As the photo diagram shows, the system was successful in determining an approximate distance and location.

Pic 2017-02-13 at 11.41.46 AM

Hough notes that the system is a low-cost proof-of-concept. Suggested improvements include “more precise location sensors [that] would improve target location accuracy. Tapping into the high quality compass and GPS sensors on a commercial aircraft, for example, would drastically improve the ability of the system.” He also stated that smartphones include all the equipment needed: camera, compass, GPS, processor and display. So it should be possible to make a smartphone application to accomplish the same task.

From “Detection and Location System for Laser Interference with Aircraft”, December 2016. Thanks to Nate Hough for bringing this to our attention and allowing us to host the PDF. Note: A similar system, which does not calculate the laser source location, is the Laser Event Recorder.

UK: New law proposes prison for aiming laser pens at aircraft, trains, cars, other vehicles

The U.K. Department for Transport on February 5 2017 said it would propose a new law making it illegal to shine laser light towards an aircraft, train, or road vehicle.

It is more stringent than the current law which 1) only applies to aiming at aircraft, 2) requires prosecutors to prove that the perpetrator endangered the aircraft and 3) has a fine of up to £2,500 (USD $3,112).

The new law will 1) apply to a wider variety of transport modes including automobiles, 2) require prosecutors only to prove that the laser was directed towards the transport vehicle and 3) will also add the prospect of prison time to the potential punishment. The exact new fines and prison terms were not stated in the DfT announcement.
Click to

US: Study shows FAA-reported eye effects or injuries for four recent years

LaserPointerSafety.com has analyzed pilot reports of eye injuries and effects which were sent to the U.S. Federal Aviation Administration for four years: 2011, 2012, 2015 and 2016.

The data shows that pilots reported eye effects or injuries in less than 1% of laser illumination incidents. Flashblindness was the most-reported effect, followed by “Pain, burning or irritation in eye.” Blurriness was also frequently listed, along with unspecified “eye injury.”

In 20% of eye effect/injury cases, the person affected sought medical attention.

Pic 2017-01-17 at 12.22.24 AM copy

Pic 2017-01-17 at 12.21.32 AM copy

From the FAA weekly Laser Report

US: 7,442 laser incidents in 2016; slight decrease compared to 2015

According to FAA data, there were 7,442 laser illuminations reported by pilots in 2016. This is a slight decrease of 3.5%, compared to 2015. However, both 2015 and 2016 had far more incidents than the previous four years, 2011-2014.

Pic 2017-01-10 at 2.41.31 AM

Here is the same data, arranged to show the average number of incidents per day:

Pic 2017-01-10 at 2.46.39 AM

Laser color(s)

As in previous years, green was by far the most-reported color:

FAA 2016 reported laser colors pie chart - 0600w

An October 2016 U.S. Food and Drug Administration proposal would allow the manufacture of laser pointers only in the 610-710 nanometer wavelength (orange-red to deep red). This chart shows the 2016 laser illuminations arranged according to those colors:

FAA 2016 reported laser colors pie chart nanometers - 0600w

Eye injuries or effects

There were 24 laser illumination incidents in 2016 where eye effects or injuries were listed. This is 0.32% of the total number of incidents. These are the effects listed; the total adds up to more than 24 due to multiple effects in some cases.

Pic 2017-01-16 at 12.00.46 PM

From the FAA weekly Laser Report, January 9 2017 with data January 1 - December 31 2016