A comprehensive resource for safe and responsible laser use

CANADA: Airbus agrees to commercialize anti-laser windscreen material; eliminates need for laser protective eyewear

Airbus has entered into an agreement with Halifax-based Metamaterial Technologies Inc. to “validate, certify, and commercialize” MTI’s laser glare reducing filter for use on aircraft windscreens. This means that pilots will automatically be protected from the visual interference of bright laser beams — at least, lasers that have the same wavelength (color) that the filter protects against.

The film will not fully block the laser light. But it will significantly reduce the glare and temporary flash blindness effects that can occur when a laser is aimed at an aircraft cockpit. This in turn reduces the potential hazard of a laser illumination.

The announcement was made at a February 21 2017 press conference. In a press release kit photo, MTI’s founder and CEO, George Palikaras, demonstrated the laser-reflecting properties by holding up a windscreen that included MTI’s metaAir film:

George Palikaras MTI Lamda Guard metaAir laser windscreen

The press release did not indicate a time frame for introduction of the windscreens into service, nor details such as an estimated cost, or aircraft to be outfitted. An Airbus spokesperson did say that there are applications beyond the company’s commercial aircraft division. Palikaras said that metaAir “can offer solutions in other industries including the military, transportation and glass manufacturers.”

For more detailed information on Airbus’ and MTI’s plans, see this page which includes interview Q&A questions with George Palikaras a few days after the February 21 press conference.

UPDATED April 14 2017: Metamaterials Technologies Inc. closed an $8.3 million round of funding. This will be used to support commercialization of the windscreen film and to add needed staff. MTI can produce MetaAir sheets 80 cm wide by 100 cm long, which is sufficient for standard cockpit windows that are 60 cm wide. However, the process is currently semi-automated and needs to be fully automated. MTI is also looking for new headquarters. From the Chronicle Herald.

Metamaterial Technologies Inc. issued a press release dated February 21 2017, which is reprinted below.
Click to read more...

US: Student develops experimental laser location detection device

A university student has designed and built a prototype laser illumination detector to determine the approximate location of a green laser source. It was developed by Nate Hough, a student in the Department of Electrical and Computer Engineering at George Mason University in Fairfax, Virginia.

The system is intended for use in cockpits, and is self-contained — it does not need to interface with any aircraft instruments. For location, altitude and orientation data, it has a GPS and a 3-axis magnetic compass.

A laser is detected by a camera sensor, currently with 1024 x 1024 pixel resolution. The camera detects the bright “bloom” from a direct or near-direct laser illumination (left image, below). To distinguish laser light from a bright non-laser light such as the sun, it looks at surrounding pixels to see whether they saturate the green channel of the sensor. (The system currently looks only for green laser beams since those represent over 90% of FAA-reported laser incidents. But future versions could look for other color laser beams as well.)

Pic 2017-02-13 at 11.54.52 AM


As the laser aims away from the camera, the bright center of the laser is still visible (right image, above). The system then looks at the center of the bright area to find the pixel location. Knowing the camera’s orientation, location and altitude, a Raspberry Pi computer running a Python program written by Hough calculates the approximate location. This is automatically sent via text message to pre-programmed recipients which could include law enforcement.

In ground testing on a slope, at a relatively short distance, the error was 15 meters. As the photo diagram shows, the system was successful in determining an approximate distance and location.

Pic 2017-02-13 at 11.41.46 AM


Hough notes that the system is a low-cost proof-of-concept. Suggested improvements include “more precise location sensors [that] would improve target location accuracy. Tapping into the high quality compass and GPS sensors on a commercial aircraft, for example, would drastically improve the ability of the system.” He also stated that smartphones include all the equipment needed: camera, compass, GPS, processor and display. So it should be possible to make a smartphone application to accomplish the same task.

From “Detection and Location System for Laser Interference with Aircraft”, December 2016. Thanks to Nate Hough for bringing this to our attention and allowing us to host the PDF. Note: A similar system, which does not calculate the laser source location, is the Laser Event Recorder.

US: Bird wearing tiny goggles safely flies through laser beam

In a scientific study, a small parrot was equipped with tiny 3D-printed laser safety goggles, to protect its eyes as it flew through a sheet of laser light used to record the bird’s airflow.

2016-12-8 Tiny bird on perch


Researchers at Stanford University wanted to get data on how much lift a bird generates. To monitor the wing wake and vortices, they used a laser beam spread by a lens into a plane of light. The light source was a Litron brand double-pumped Neodymium-doped yttrium lithium fluoride (Nd:YLF) laser. The light was green at 527 nanometers, and had a pulse repetition rate of 1 kHz.

A non-toxic mist in the air illuminated the light sheet, just like theatrical fog used at concert laser light shows. As the bird flew through the light, the mist scattered and showed the air patterns, in a technique called “particle imaging velocimetry” or PIV.

2016-12-8 Tiny bird in laser


Bird-sized goggles were used to prevent any harm to the bird’s eyesight. The lenses came from human laser safety glasses and had an optical density of 6, meaning that they transmitted only 0.001% of the laser light. The frame was 3D printed and was held on by veterinary tape. The goggles weighed 1.68 grams, which is roughly 6% of the bird’s body weight (equivalent to 9 pound glasses on a 150 lb. human).

2016-12-8 Tiny bird goggles


Before beginning the series of experiments, the researchers trained four parrotlets “through many small stress-free steps of habituation.” After “several months of effort” with the birds, only one — a parrotlet named “Obi” — voluntarily flew with the laser goggles. According to the researchers, “[a]ll training and experimental procedures were approved by Stanford's Administrative Panel on Laboratory Animal Care.”

2016-12-8 Tiny bird in flight


Twelve cameras were used. Four high-speed stereo cameras were for PIV particle motion recording and recorded 4000 frames per flight. Eight cameras were for recording Obi’s wing and head kinematics as it flew from one perch, through the laser light plane, to a landing perch.

The results give “the clearest picture to date of the wake left by a flying animal.” Unexpectedly, the wing tip vortices did not stay stable as happens with aircraft, but instead broke up quickly and violently. This had not been predicted by any previous models.

2016-12-8 Tiny bird vortex visualization


From a Stanford University news story, picked up by numerous websites and news outlets including Popular Mechanics, NBC News, The Verge, Optics.org and many others. The results were published December 6 2016 in the journal Bioinspiration & Biometrics, volume 12, number 1.

US: Mobile app planned for detecting laser illuminations

A U.S. company will be releasing a mobile app allowing smartphones to detect, measure and record the location of laser illuminations. Pilots are the primary intended users for the app, which is currently called “Laser Event Recorder” or “LERapp”. In a planned upgrade, the app will also notify other nearby pilots of the illumination event.

LERapp was developed a few years ago by Dr. Craig Williamson of the U.K. Defence Science and Technology Laboratory (Dstl). The app uses the smartphone camera; when a laser or bright light event is detected, the app makes a digital record. This includes a picture of the event, the GPS location of the phone, the user’s heading, the date and time, and laser parameters such as the beam color and estimated irradiance. A March 2013 paper, presented by Dr. Williamson at the International Laser Safety Conference, describes the app in more detail.

LERapp-screenshot 300w
Screenshot from the 2013 version of the Laser Event Recorder app


As far as LaserPointerSafety.com can determine, the app was never made publicly available such as being put on an app store.

To commercialize LERapp, in December 2016 it was licensed to Profound Technologies, Inc. of Warner Robins, Georgia, who will be doing further development and marketing in major regions such as the U.S., U.K. and Europe. Profound’s president Randall Fitzgerald said that there are two planned versions.

One version will be a free or low-cost basic app that has the current features of LERapp. Profound will also be developing a central database where laser incident reports will be automatically filed, which then can be pushed out to other users of LERapp such as nearby pilots. These notifications would be available in a higher-cost version, or perhaps the notification feature would be a “freemium” add-on to the basic app.

The app will not directly be able to locate the laser’s location — the only geographic information stored is the GPS location and heading of the smartphone at the time of the incident. However, having a photo of the laser illumination may allow law enforcement to locate landmarks or street patterns. Also, Profound is considering future versions which could triangulate a ground location or area based on multiple illumination events reported to the database within a short timespan.

LERapp currently runs on Apple’s iOS operating system for iPhones. There is as yet no public release schedule for the basic or database versions. At the time of Apple App Store release, Profound also intends to have an Android-compatible version available.

From a Profound Technologies press release dated December 4 2016 and a December 8 telephone interview with Randall Fitzgerald. LaserPointerSafety.com previously ran a story about the Dstl version of the LERapp in March 2013.

US: Anti-laser laser for drone defense

The cameras and sensors on drones can be disrupted by laser light. This is of special concern to the military.

To help defend drones against laser light, a California company has developed a defensive laser to be mounted on the drone. When it detects a laser attack, it first analyzes the incoming beam’s power, wavelength, pulse frequency and source. It then uses its own laser to counter the incoming beam.

The exact method is secret. New Scientist speculates “…it may involve fooling the control system into thinking it is hitting its target despite the laser actually pointing a few metres to the side. A direct hit would have produced a big burst of reflected light, so a pulse sent back by an anti-laser laser could make it look like the original laser was on target.”

The company is Adsys Controls of Irvine, California; the anti-laser laser system is called Helios. According to the company, “Helios is a low SWaP [Space, Weight and Power], completely passive Counter Directed Energy Weapon system capable of nullifying the enemy’s DEW [Directed Energy Weapon]. Consisting of a small UAV-mounted sensor package, Helios provides full analysis of the incoming DEW beam including localization and intensity. With this information it passively jams the enemy, protecting the vehicle and the payload.”

From Popular Science and New Scientist

US: Army looking for battlefield goggles which include laser eye protection

The U.S. Army is looking for prototype Next Generation Eye Protection (NGEP) which will include protection against laser light. The solicitation notice is expected around August 3 2016. Below is text from the pre-solitication notice issued July 20 2016. The laser requirement is in boldface.

The US Army Contracting Center, Aberdeen Proving Ground, Natick Contracting Division (NCD) on behalf of the US Army Natick Soldier Research, Development and Engineering Center (NSRDEC) intends to issue a solicitation under Authority of FAR Part 15 for Research and Development (R&D) efforts to deliver prototype systems capable of meeting Next Generation Eye Protection (NGEP) requirements. Eyewear must be capable of exceeding military ballistic fragmentation protection requirements for eye protection as currently outlined in MIL-PRF-32432, meet optical quality requirements, provide configuration(s) with laser eye protection, accommodate varying light conditions, and be compatible with the Universal Prescription Lens Carrier (UPLC) to accommodate Marines requiring vision correction. Since follow-on production is envisioned, the ability to produce protective eyewear in production quantities is also a key consideration.

The Government is anticipating awarding 1 or more firm fixed price (FFP) contracts with a period of performance of 12 months for the required services. The Government reserves the right to award one or no contracts as a result of the solicitation.


From the pre-solicitation notice at FedBizOpps.gov. The Solicitation Number is W911QY-16-R-0043.

US: Air Force buys 11,805 laser eye protection glasses for $30.1 million

The U.S. Air Force Materiel Command is purchasing up to 11,805 Aircrew Laser Eye Protection (ALEP) Block 2 spectacles. According to the June 25 2016 notice,

“Air Force aircrew members require an ALEP system for day and night applications that balance requirements for laser eye protection, mission/aircraft compatibility, and flight safety. The ALEP Block 2 system provides aircrew members with enhanced protection against hazard and threat laser devices in combat and training situations while minimizing visual acuity degradation. The ALEP Block 2 system also provides sufficient protection to prevent permanent eye damage and temporary effects (glare, flash blindness, etc.) from laser weapons/devices. The Block 2 system is compatible with current aircrew flight equipment, cockpit/cabin displays, exterior aircraft lights, and airfield lights, night vision devices, helmet mounted displays, and exterior scenery.”

The supplier is Teledyne Scientific & Imaging. The contract amount is $30.1 million, meaning the cost amortized over each spectacle is $2,550. The sole source contract stated “Teledyne is the only firm capable of providing the supplies without the USAF experiencing substantial duplication of cost that could not be expected to be recovered through competition and unacceptable delays in fulfilling its requirements.”

From GovTribe and airforce-technology.com. The federal solicitation number for this contract is FA8606-15-C-6370.

US: New pilot protective "anti-laser" glasses announced

A professor of medicine with 161 patents in medicine, pharmacology and aerospace is leading a team that has introduced glasses to help protect pilots from laser beams. Dr. Nicholas Perricone, author of best-sellers including The Perricone Prescription and Forever Young, and founder of PerriQuest Defense Research Enterprises, said that the laser protective eyewear has been in development for about three years.

The glasses block three laser wavelengths, in the red, green and blue regions. According to Dr. Perricone, “The real challenge was how do you block out red, blue, and green without changing the color discrimination. It’s critical a pilot sees color. He has to look at his instruments, he has to look at runway lights and a lot of other signals.”

A July 30 2015 news story said the glasses “have been manufactured and are ready for purchase, costing $400 a pair.”

Dr. Perricone was quoted as saying that if pilots are required to wear glasses like these, “then this problem will go away. No one is going to throw rocks at a window that won’t break.”

From WTNH.com

US: Study shows windscreen coatings can reduce laser intensity

A study published online May 12 2015 indicates that nanocomposite films on aircraft windscreens can reduce laser intensity by 36% to 88%. The findings, published by the Journal of Aviation Technology and Engineering, tested three densities of nanoparticle coatings. The abstract concludes “Results lend support of the view that the addition of transparent laser attenuating films applied to aircraft windscreens may improve flight safety, and reduce the risk from distraction or disruption of flight crewmembers’ vision.”

More information at the LaserPointerSafety.com page on the 2015 Nanocomposite coating study

Canada: UPDATED - Airbus to test windscreen anti-laser film

Airbus will be testing a film said to reflect laser light, from Halifax-area manufacturer Lamda Guard. The announcement came at a June 4 2014 press conference jointly held by the two companies.

Lamda Guard’s “metaAir” film uses metamaterials, also called nano-composites, to reflect one or more laser colors without interfering with normal visibility. According to the company, the film can protect from beam angles up to +/- 50 degrees away from head-on. This has benefits when protecting cockpits against laser strikes, which can come from any angle.

It can be adhesively applied to glass or clear plastic; applications include eyewear, protective goggles and windscreens. Lamda Guard says that the Airbus tests on windscreens will mark the first time an optical metamaterial nano-composite has been applied on a large-scale surface.

metaAir small
General schematic of metaAir film. Click for larger image.



The metaAir film can be engineered either to absorb or reflect the desired wavelength(s). For aircraft application, the reflection approach is being used in order to block undesired light wavelengths from entering the cockpit. The reflection bandwidth is currently in the 15-20 nanometer range.

For the most common type of green laser pointer -- responsible for 93% of FAA reported incidents in 2013 -- with a wavelength of 532 nm, the film would block light from about 522 to 542 nm. Additional wavelength blocking can be added as well, such as the 445 nm blue used in powerful handheld lasers such as the Wicked Lasers S3 Arctic that has up to 2 watts (2000 milliwatts) output.

Two key advantages of blocking laser light at the windscreen are that pilots do not have to carry or use laser protective eyewear, and there is absolutely no interference with the visibility of aircraft instruments. In preliminary tests, the anti-laser film had a narrow enough bandwidth that it did not interfere with airport lights seen outside a cockpit.

Because of ultraviolet degradation to the adhesive layer that adheres the optical metamaterial to the windscreen, the film would need to be replaced after about 5,000 flight hours. This translates into overnight replacement roughly once every three years. The optical metamaterial itself would not have a flight hour restriction.

In addition to piloted commercial aircraft windscreens, Airbus will also be investigating related applications such as piloted military windscreens, UAV camera protection, and sensor protection for satellites and airborne platforms.

Click to read more...

US: Air Force study to help protect pilots from laser injuries

TASC Inc., an engineering service company that does contract work for the departments of Defense and Homeland Security, is conducting research on laser and broadband hazards that are expected to be a part of future combat scenarios.

TASC is working on countermeasures such as laser eye protection and the development of procedures for injury assessment. The work is being performed under the Optical Radiation Bioeffects and Safety contract with the Air Force’s 711th Human Performance Wing’s Optical Radiation Bioeffects Branch at Fort Sam Houston in San Antonio, Texas.

From the San Antonio Business Journal

Switzerland: After laser pointer attacks, first responders will have laser protective eyewear

In 2013, there were six laser attacks on police and rescue personnel in Basel, Switzerland. One officer was said to have permanent retinal damage.

After tests in mid-2013, the Basil Justice and Security Department purchased 1,000 pairs of laser protective eyewear, at 200 Swiss Francs each (USD $224).

All Basel police officers and rescue emergency vehicles are equipped with the glasses, as of December 2013. Other Swiss cantons are in the testing phase.

Pic 2014-01-26 at 12.01.32 PM
The Basel anti-laser glasses are demonstrated in this frame from a SRF video.


From a December 16 2013 report by Schweizer Radio und Fernsehen, (original German text and Google-translated into English). Thanks to Basel officer Ruedi Maier for bringing this to our attention. For additional news items from Switzerland, including the 2011 purchase of laser protective eyewear for air rescue helicopter pilots, click here.

Canada: Laser strikes up significantly in Edmonton

Incidents of persons aiming lasers at Edmonton police aircraft have risen significantly. As of September 9 2013, there have been 10 such incidents. This compares with 9 incidents in all of 2012, and 4 incidents in 2011.

A police pilot spokesperson said laser users are not reading the packaging which clearly states not to aim at aircraft. After being caught, "There's been a lot of apologies, a lot of regret, some people not realizing the consequences of what they were doing, and then there's been the far opposite -- I can't believe this is happening, this is ludicrous, this isn't serious, it's just a laser pointer."

The pilot also said that a ban is not the answer: "If it's used properly, it's harmless. It's hard to ban something like that, the sale of it completely if 95% of the general public are using it properly."

He noted that not just police aircraft are being lased. Commercial and private aircraft also are at risk.

Edmonton police helicopter pilots are equipped with safety glasses for use during laser illuminations. They have two pair, one to attenuate red laser light and one to attenuate green laser light.

For details on the two most recent Edmonton incidents, on September 6 and 7 2012, see this LaserPointerSafety.com story.

From the Edmonton Journal and Edmonton Sun. Thanks to Keith Murland for bringing this to our attention.

US: $208 million contract to protect Army helicopters from laser threats

The U.S. Army on August 26 2013 awarded a $208.5 million multi-year contract to UT Aerospace Systems ISR in Danbury, Conn. for a passive laser warning system to detect analyze and display threat information when a helicopter is illuminated by lasers. The flight crew is directed on how to take evasive action. The laser threats can be from weapons that use lasers for designation and range finding, and from blinding lasers.

The Army/Navy Piloted Aircraft/Visual and Visible Light/Receiving, Passive Detecting (AN/AVR-2B) Laser Detecting Sets (LDS) uses four sensor units placed on the aircraft. It is smaller, lighter and uses less power than a previous generation developed for the cancelled Comanche helicopter program.

News reports did not state how much it costs to equip each helicopter with an AN/AVR-2B system.

Army laser detection sensors
One of the four sensor packages to detect laser threats on U.S. military helicopters


From Avionics Intelligence August 31 2013 and September 3 2013

US: Army Research Laboratory works on laser protection for eyes, sensors, etc.

An article on Military.com discusses the U.S. Army Research Laboratory, and its work to protect people, sensors and equipment from laser damage. ARL has done this type of work for almost 20 years.

Laser protection team leader Andy Mott was quoted as saying “Lasers of varying pulse width and wavelength are being developed every day. We protect against the known threats, and unknown ones. We develop protection for electronic sensors of the future, as well as the sighting systems of today.”

More details are at the Military.com story

Canada: Iridian announces new anti-laser protection glasses

A supplier of laser protective eyewear announced June 21 2013 a new line of glasses designed specifically for pilots.

The LaseReflect Aviator LRG10 glasses are said to mitigate the effects of laser illumination incidents. They reflect more than 99% of 532 nanometer green laser light, the most common color in laser attacks. (According to FAA statistics, about 95% of reported incidents in recent years have involved green light.) They also reflect near-infrared light at 1064 nm, which often is a byproduct of green lasers that are not manufactured with adequate IR-blocking filters. The cost is USD $299.

Custom LaseReflect Aviator glasses are available for specific colors and powers, including multiple wavelengths in a single pair of glasses. For example, blue (405 nm and 445 nm) and red (650 nm) light can also be reflected by the glasses.
Click to read more...

US: Researchers illuminate retinas to help stop laser damage

Laser eye safety researchers have demonstrated that retinal cells illuminated with low levels of red light are up to 40% more resistant to damaging laser pulses.

Because the laser pulse wavelength used was in the infrared, and the cells were cultured (not live retinas) there is no current practical use for pilots and others looking for glasses-free resistance to visible laser light. However, this research may open up other avenues as it does indicate that perhaps the retina can be “hardened.”
Click to read more...

US: L.A. Sheriff's Dept. puts "Laser Strike" info video on YouTube

The Los Angeles County Sheriff’s Department on April 4 2013 uploaded a 13-minute long training video to YouTube called “Laser Strike”. The video was produced in association with the LASD Aero Bureau, the U.S. Department of Homeland Security, and the FBI. In addition, four other “bonus content” videos were uploaded, which feature interviews.

LASD laser video still frame

To see the video, click this link to YouTube. Following this link should also lead to the bonus content videos.

To get a flavor of the training video, click the “Read More…” link below for a list of selected excerpts and interesting statements.

Click to read more...

UK: Low-cost laser event recorder is an iPhone app

A U.K. researcher has developed a laser event recorder which can run on an iPhone, iPad, smartphone, or pilot Electronic Flight Bag. The “LERapp” records laser or bright light events; each record includes a picture of the event, the GPS location, heading, date, time and laser parameters such as color and estimated irradiance.

LERapp-screenshot 300w

Click to read more...

US: Gold-coated nanotech could "laser-proof" pilots' glasses

A researcher at the University of Central Florida is developing what he calls “a bulletproof vest for the eyes”, to protect pilots from bright laser beams. Jayan Thomas proposes using glasses coated with gold nanoclusters that have “optical limiting” capabilities, blocking high-energy laser beams. Thomas is an assistant professor of chemistry at UCF’s NanoScience Technology Center.

According to a professor at Embry-Riddle Aeronautical University, gold-tinted eyewear has been used by military pilots for laser protection but only works against certain wavelengths of laser light. However, said Dan Macchiarella, if Thomas’ idea “could be applied to lasers of all strengths and wavelengths, that would certainly be a big advancement.”

A March 10 2013 Orlando Sentinel story noted that funding cuts and competition for grants mean that Thomas’ research faces “some serious hurdles” to develop this idea further. Thomas said finding research money is “going to be very difficult, very difficult.”

From the Orlando Sentinel

Israel: Advanced anti-laser filter announced

A newly developed anti-laser filter works by blocking laser light based not just on the wavelength (color) as with traditional filters, but based also on the light level (irradiance). KiloLambda Technologies of Tel Aviv says their filter “is clear at all wavelengths until it is hit by an incoming power above a certain level. Below the threshold, the filter has high transmission over the whole spectral band, but when the input power exceeds the threshold, transmission is either limited to a certain value or blocked completely."

It is not clear whether the filter is available at this time (May 2012). The company intends to incorporate it into glasses and night-vision goggles worn by pilots, to protect against flash blindness, meaning power densities from 100 µW/cm² up to 1000 µW/cm².

From Optics.org

US: Tampa police purchase anti-laser filters for night vision goggles

The Tampa (Florida) Police Department Aviation Unit has purchased anti-laser filters for use with night vision goggles (NFGs). Manufacturer Night Flight Concepts said that Tampa is one of the first law enforcement agencies to use the filters. According to Aviation Today, the Tampa police department has four helicopters: two Bell 407s, one Bell 206, and a Hughes OH-6.

A person wearing NVGs is normally not at risk of retinal injuries, since direct laser light falls on the image intensifier device and not the eyes. (Depending on the NVG mounting style, it may be possible for direct laser light to enter from the side or from parts of the vision not covered by the NVG optics.) However, a serious concern is with laser light causing “blooming” of the night vision enhanced image, or even damaging the NVG sensor. To help prevent this, Night Flight Concepts developed “Laser Armor” Light Interference Filters.

Pic 2012-03-01 at 11.51.53 AM


Company consultant Dr. Dudley Crosson says the screw-in filters “allow the goggles to function normally by reducing the blooming effect significantly.” A Laser Armor product sheet says the filters reduce blue (445-450 nm) intensity by 97%, and reduce green (532 nm) intensity by 99.5%.

From Aviation Today and a Night Flight Concepts press release